

Progressive Education Society's

Modern college of Arts, Science & Commerce,

Ganeshkhind, Pune 16

End Semester Examination October 2023

Faculty: Science and Technology

Program: B.Sc. Code(BscGen03)

Semester III Set B

Course Type:Core

Program(Specific): B.Sc. General Class:S.Y.BSc.(Regular)

Max. Marks:35

Name of the Course: Calculus of several variable

Course Code: 23-MT-231

Paper No: I Time: 2 Hours

Instructions To the Candidates:

- 1. There are 3 sections in the question paper. Write each section on separate page.
- 2. All Sections are compulsory.
- 3. Figures to the right indicate full marks.
- 4. Draw a well labelled diagram wherever necessary.

SECTION A

Q 1)Attempt any FIVE of the following.

[10 Marks]

i) Sketch the level curve of the function.

$$g(x,y) = \sqrt{9 - x^2 - y^2}$$
 for $k = 0, 1, 2, 3$.

- ii) State the Sandwich principle.
- iii) Show that following limit does not exit.

$$\lim_{(x,y)\to\ (0,0)} \left(\frac{xy^2}{x^2 + y^4}\right).$$

iv) Using polar co-ordinate find the following limit.

$$\lim_{(x,y)\to (0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}.$$

v) Evaluate

$$\int_{-3}^{3} \int_{0}^{\frac{\pi}{2}} (y + y^{2} cosx) dx dy.$$

- vi) Find the Jocobian of the transformation. x = uv, $y = \frac{u}{v}$.
- vii) Evaluate

$$\int_0^1 \int_x^{2x} 2xy dy dx.$$

SECTION B

Q.2) Attempt any THREE of the following.

[15 marks.]

- i) Use the definition of partial derivative as limits to find $f_x(x,y)$ and $f_y(x,y)$ if $f(x,y) = y^5 3xy$.
- ii) Verify that the function $Z = ln(e^x + e^y)$ is a solution of the differential equation

$$Z_{xx}Z_{yy} - (Z_{yx})^2 = 0.$$

iii) Show that any function of the form

$$z = f(x + at) + g(x - at)$$

is a solution of the wave equation.

iv) Evaluate

$$\int \int_{D} xy dx dy.$$

where D is the region enclosed by the curves $y = x^2$ and y = 3x.

v) If
$$z = x^4 + x^2y$$
, $x = s + 2t - u$, $y = stu^2$, then find

$$\frac{\partial z}{\partial s}, \ \frac{\partial z}{\partial t}, \ \frac{\partial z}{\partial u} \ \ at \ \ s=4, t=2, u=1.$$

Attempt any one of the following.

[10 Marks]

- i) a) State and prove Eulers theorem for homogeneous function.
 - b) If

$$g(s,t) = f(s^2 - t^2, t^2 - s^2)$$

and f is differentiable then show that g satisfies the equation

$$t.\frac{\partial g}{\partial s} + s.\frac{\partial g}{\partial t} = 0$$

- ii. a)A rectangular box without a lid is to be made from $12m^2$ of cardboard. Find the maximum volume of such a box.(use langrange multiplier method).
 - b) Evaluate double integral

$$\int \int_{R} \frac{xy^2}{x^2 + 1} dx dy$$

where the region R is given as

$$R = \{(x, y) : 0 \le x \le 1, -3 \le y \le 3\}.$$
